Thursday, December 14, 2017
'Fundamentals of Optimization'
'1. P1 := {x ÉRn : A(1)x = b(1), xâ¥0}â Φ\nP2 := {x ÉRn : A(2)x = b(2), xâ¥0}â Φ\nA(1) ÉRm1Xn, A(2) ÉRm2Xn, b(1) ÉRm1 , b(2) ÉRm2.\nP1 x P2 := {(u, v) ÉR2n: u ÉP1, v ÉP2}\nlet x=,\n2. x1 + 2x2 2147383647x3 + x4 = 3\n2x1 x2 +17189128703x3+ 2x4 = 1\nx1, x2, x3, x4 â¥0\na.\nb,\n3. A ÉRmxn, (A) = m and b ÉRm\nF := {xÉRn: Ax=b, xâ¥0}\nxÉRn is an thoroughgoing principal of F if Ạis a radical executable ascendent of {Ax = b, x⥠0}\n4. A ÉRmxn (A) = m and b ÉRm\na. {x ÉRn : Ax =b, xâ¥0}, c ÉRn\n guckimize cTx orbit to Ax = b\nx ⥠0 is unmeasured\nb. {x ÉRn : Ax =b, xâ¥0}is numberless and has at to the lowest degree ane natural top\n5. (P) { áº}\n6. F::= (x ÉR3 : x λ1e1+ λ2e2+ λ3e3 + ue, for some(a) λ ÉR3+, u É R, e-T λ =1}\nF := Axb { A ÉRmx3, b ÉRm}\n7. max {cT x: Ax = b, x ⥠0),\nA := 1 2 2 2 2 2 2 7 1\n1 1 1 2 1 1 1 5 2\n1 1 2 1 4 -2 0 , b := 5 , c := 2\n1 2 1 1 -1 4 0 5 2\n6\n4\n-4\nB := {1,2,3,4}, x*B = [1,1,1,1,1]\n8. n>m , A ÉRmxn, (A) =m\n increase cTx belittle bTy\n(P) field to Ax = b and (D) equal to(p) to ATy-s =c\nx â¥0 s ⥠-\n9. (A,b, c) (A ÉRmxn, regulate (A) =m), y ÉRm,\nc := c - ATy\nd ÉRn, Ad =0, c-Td = cTd'
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.